3.7.66 \(\int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx\) [666]

Optimal. Leaf size=317 \[ -\frac {2 b \left (9 a^2-8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

[Out]

2/3*b^2*sin(d*x+c)*sec(d*x+c)^(1/2)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^(3/2)+8/3*b^2*(2*a^2-b^2)*sin(d*x+c)*sec(d*
x+c)^(1/2)/a^2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))^(1/2)-2/3*b*(9*a^2-8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d
*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2
)/a^3/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)+2/3*(3*a^4-15*a^2*b^2+8*b^4)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x
+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^3/(a^2-b^2)^2/d/((b+a*c
os(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.49, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3932, 4185, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} \frac {8 b^2 \left (2 a^2-b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a^2 d \left (a^2-b^2\right )^2 \sqrt {a+b \sec (c+d x)}}+\frac {2 b^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac {2 b \left (9 a^2-8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{3 a^3 d \left (a^2-b^2\right )^2 \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(-2*b*(9*a^2 - 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(3*a^3*(a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(3*a^4 - 15*a^2*b^2 + 8*b^4)*EllipticE[(c + d*x)/2, (
2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(3*a^3*(a^2 - b^2)^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c +
 d*x]]) + (2*b^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (8*b^2*(2*a
^2 - b^2)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*a^2*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3932

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)
*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m + 1
)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4185

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), I
nt[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)*
(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x
], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &&  !(ILtQ[m + 1/2, 0] &
& ILtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{5/2}} \, dx &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {2 \int \frac {-\frac {3 a^2}{2}+2 b^2+\frac {3}{2} a b \sec (c+d x)-b^2 \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))^{3/2}} \, dx}{3 a \left (a^2-b^2\right )}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}+\frac {4 \int \frac {\frac {1}{4} \left (3 a^4-15 a^2 b^2+8 b^4\right )-\frac {1}{2} a b \left (3 a^2-b^2\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{3 a^2 \left (a^2-b^2\right )^2}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (9 a^2-8 b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )}+\frac {\left (3 a^4-15 a^2 b^2+8 b^4\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right )^2}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (9 a^2-8 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{3 a^3 \left (a^2-b^2\right )^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}-\frac {\left (b \left (9 a^2-8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{3 a^3 \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{3 a^3 \left (a^2-b^2\right )^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=-\frac {2 b \left (9 a^2-8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{3 a^3 \left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (3 a^4-15 a^2 b^2+8 b^4\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{3 a^3 \left (a^2-b^2\right )^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 b^2 \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}+\frac {8 b^2 \left (2 a^2-b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.88, size = 208, normalized size = 0.66 \begin {gather*} \frac {2 (b+a \cos (c+d x)) \sec ^{\frac {5}{2}}(c+d x) \left (\frac {\left (\frac {b+a \cos (c+d x)}{a+b}\right )^{3/2} \left (\left (3 a^4-15 a^2 b^2+8 b^4\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+b \left (-9 a^3+9 a^2 b+8 a b^2-8 b^3\right ) F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )}{(a-b)^2}+\frac {a b^2 \left (8 a^2 b-4 b^3+a \left (9 a^2-5 b^2\right ) \cos (c+d x)\right ) \sin (c+d x)}{\left (a^2-b^2\right )^2}\right )}{3 a^3 d (a+b \sec (c+d x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Sec[c + d*x]]*(a + b*Sec[c + d*x])^(5/2)),x]

[Out]

(2*(b + a*Cos[c + d*x])*Sec[c + d*x]^(5/2)*((((b + a*Cos[c + d*x])/(a + b))^(3/2)*((3*a^4 - 15*a^2*b^2 + 8*b^4
)*EllipticE[(c + d*x)/2, (2*a)/(a + b)] + b*(-9*a^3 + 9*a^2*b + 8*a*b^2 - 8*b^3)*EllipticF[(c + d*x)/2, (2*a)/
(a + b)]))/(a - b)^2 + (a*b^2*(8*a^2*b - 4*b^3 + a*(9*a^2 - 5*b^2)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))
/(3*a^3*d*(a + b*Sec[c + d*x])^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(3102\) vs. \(2(347)=694\).
time = 0.23, size = 3103, normalized size = 9.79

method result size
default \(\text {Expression too large to display}\) \(3103\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/3/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(-3*cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^4*b+3*cos(d*x+c)^3*((a-b)/(a+
b))^(1/2)*a^2*b^3-18*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3*b^2+3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*
x+c)^2*sin(d*x+c)*a^5+9*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+c
os(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^4*b-6*((b+a*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x
+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3*b^2-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(
1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)
^2*sin(d*x+c)*a^2*b^3+12*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a*b^4+6*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^4*b+12*cos(
d*x+c)*((a-b)/(a+b))^(1/2)*a^3*b^2-18*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b^3-8*cos(d*x+c)*((a-b)/(a+b))^(1/2)*
a*b^4-8*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE
((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^5+3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*
x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d
*x+c),(-(a+b)/(a-b))^(1/2))*a^5-3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Ellip
ticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b*sin(d*x+c)+15*((b+a*cos(d*x+c)
)/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c
),(-(a+b)/(a-b))^(1/2))*a^2*b^3*sin(d*x+c)+3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^
(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b*sin(d*x+c)+9*((b+a*
cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)
/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2*sin(d*x+c)-6*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos
(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3*sin(d*x
+c)-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/
(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4*sin(d*x+c)+3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^5+8*cos(d*
x+c)*((a-b)/(a+b))^(1/2)*b^5-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*Elliptic
E((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^5*sin(d*x+c)-3*cos(d*x+c)^3*((a-b)/(a
+b))^(1/2)*a^5-8*((a-b)/(a+b))^(1/2)*b^5-3*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1
/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^5
+3*((a-b)/(a+b))^(1/2)*a^3*b^2+11*((a-b)/(a+b))^(1/2)*a^2*b^3-4*((a-b)/(a+b))^(1/2)*a*b^4+3*cos(d*x+c)^3*((a-b
)/(a+b))^(1/2)*a^3*b^2-3*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^4*b+4*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^2*b^3+15*
((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))
^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*cos(d*x+c)^2*sin(d*x+c)*a^3*b^2-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+
b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/
2))*cos(d*x+c)^2*sin(d*x+c)*a*b^4-3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+
cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b+15*cos
(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*
x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*b^2+15*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/
(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),
(-(a+b)/(a-b))^(1/2))*a^2*b^3-8*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(
d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^4+12*cos(d*x
+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c)
)*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^4*b+3*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(
d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)
/(a-b))^(1/2))*a^3*b^2-14*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)
))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b^3-8*cos(d*x+c)*s
in(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a
-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2...

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.04, size = 863, normalized size = 2.72 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (-6 i \, a^{4} b^{3} + 9 i \, a^{2} b^{5} - 4 i \, b^{7} + {\left (-6 i \, a^{6} b + 9 i \, a^{4} b^{3} - 4 i \, a^{2} b^{5}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (-6 i \, a^{5} b^{2} + 9 i \, a^{3} b^{4} - 4 i \, a b^{6}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 4 \, \sqrt {2} {\left (6 i \, a^{4} b^{3} - 9 i \, a^{2} b^{5} + 4 i \, b^{7} + {\left (6 i \, a^{6} b - 9 i \, a^{4} b^{3} + 4 i \, a^{2} b^{5}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (6 i \, a^{5} b^{2} - 9 i \, a^{3} b^{4} + 4 i \, a b^{6}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (-3 i \, a^{5} b^{2} + 15 i \, a^{3} b^{4} - 8 i \, a b^{6} + {\left (-3 i \, a^{7} + 15 i \, a^{5} b^{2} - 8 i \, a^{3} b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (-3 i \, a^{6} b + 15 i \, a^{4} b^{3} - 8 i \, a^{2} b^{5}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (3 i \, a^{5} b^{2} - 15 i \, a^{3} b^{4} + 8 i \, a b^{6} + {\left (3 i \, a^{7} - 15 i \, a^{5} b^{2} + 8 i \, a^{3} b^{4}\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 i \, a^{6} b - 15 i \, a^{4} b^{3} + 8 i \, a^{2} b^{5}\right )} \cos \left (d x + c\right )\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - \frac {6 \, {\left ({\left (9 \, a^{5} b^{2} - 5 \, a^{3} b^{4}\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (2 \, a^{4} b^{3} - a^{2} b^{5}\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{9 \, {\left ({\left (a^{10} - 2 \, a^{8} b^{2} + a^{6} b^{4}\right )} d \cos \left (d x + c\right )^{2} + 2 \, {\left (a^{9} b - 2 \, a^{7} b^{3} + a^{5} b^{5}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} b^{2} - 2 \, a^{6} b^{4} + a^{4} b^{6}\right )} d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/9*(4*sqrt(2)*(-6*I*a^4*b^3 + 9*I*a^2*b^5 - 4*I*b^7 + (-6*I*a^6*b + 9*I*a^4*b^3 - 4*I*a^2*b^5)*cos(d*x + c)^
2 + 2*(-6*I*a^5*b^2 + 9*I*a^3*b^4 - 4*I*a*b^6)*cos(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/
a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + 4*sqrt(2)*(6*I*a^4*b^3
 - 9*I*a^2*b^5 + 4*I*b^7 + (6*I*a^6*b - 9*I*a^4*b^3 + 4*I*a^2*b^5)*cos(d*x + c)^2 + 2*(6*I*a^5*b^2 - 9*I*a^3*b
^4 + 4*I*a*b^6)*cos(d*x + c))*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3
, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*sqrt(2)*(-3*I*a^5*b^2 + 15*I*a^3*b^4 - 8*I*a*b^6 +
(-3*I*a^7 + 15*I*a^5*b^2 - 8*I*a^3*b^4)*cos(d*x + c)^2 + 2*(-3*I*a^6*b + 15*I*a^4*b^3 - 8*I*a^2*b^5)*cos(d*x +
 c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3
*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqrt(
2)*(3*I*a^5*b^2 - 15*I*a^3*b^4 + 8*I*a*b^6 + (3*I*a^7 - 15*I*a^5*b^2 + 8*I*a^3*b^4)*cos(d*x + c)^2 + 2*(3*I*a^
6*b - 15*I*a^4*b^3 + 8*I*a^2*b^5)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*
b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c
) - 3*I*a*sin(d*x + c) + 2*b)/a)) - 6*((9*a^5*b^2 - 5*a^3*b^4)*cos(d*x + c)^2 + 4*(2*a^4*b^3 - a^2*b^5)*cos(d*
x + c))*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/((a^10 - 2*a^8*b^2 + a^6*b^4)
*d*cos(d*x + c)^2 + 2*(a^9*b - 2*a^7*b^3 + a^5*b^5)*d*cos(d*x + c) + (a^8*b^2 - 2*a^6*b^4 + a^4*b^6)*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}} \sqrt {\sec {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral(1/((a + b*sec(c + d*x))**(5/2)*sqrt(sec(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)^(5/2)*sqrt(sec(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2)),x)

[Out]

int(1/((a + b/cos(c + d*x))^(5/2)*(1/cos(c + d*x))^(1/2)), x)

________________________________________________________________________________________